\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
\(A=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{61-59}{59.61}\)
\(A=\dfrac{5}{3.5}-\dfrac{3}{3.5}+\dfrac{7}{5.7}-\dfrac{5}{5.7}+\dfrac{9}{7.9}-\dfrac{7}{7.9}+...+\dfrac{61}{59.61}-\dfrac{59}{59.61}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(A=\dfrac{1}{3}-\dfrac{1}{61}=\dfrac{61}{183}-\dfrac{3}{183}=\dfrac{58}{183}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
= \(\dfrac{1}{3}-\dfrac{1}{61}\)
= \(\dfrac{58}{183}\)
A= \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
A= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
A= \(\dfrac{1}{3}-\dfrac{1}{61}\)
A= \(\dfrac{58}{183}\)
Lời giải:
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{59}-\dfrac{1}{61}\)
\(A=\dfrac{1}{3}-\dfrac{1}{61}\)
\(A=\dfrac{58}{183}\)