\(N=\dfrac{1}{2003\cdot2002}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\right)\)
\(=\dfrac{1}{2003}-\dfrac{1}{2002}-1+\dfrac{1}{2002}\)
\(=\dfrac{1}{2003}-1=\dfrac{-2002}{2003}\)
\(N=\dfrac{1}{2003\cdot2002}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\right)\)
\(=\dfrac{1}{2003}-\dfrac{1}{2002}-1+\dfrac{1}{2002}\)
\(=\dfrac{1}{2003}-1=\dfrac{-2002}{2003}\)
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
tìm x
a, x+1/10 + x+1/11 + x+1/12 = x+1/13 + x+1/14
b, x+4/2000 + x+3/2001 = x+2/2002 + x+1/2003
A=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
Hãy rút gọn biểu thức A
tìm x
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
Tìm n nhỏ nhất để các phân số sau đêy tối giản
\(\dfrac{1}{n + 3};\dfrac{2}{n + 4};......;\dfrac{2001}{n + 2003};\dfrac{2002}{n + 2004}\)
chứng minh rằng 1/2003+2/2003^2+3/2003^3+...+2019/2003^2019<2003/2002^2
a)1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
b)1.2.3...9-1.2.3....8-1.2.3....7.82
Làm hộ em với ạ
Cho A =\(\dfrac{x^3-3x^2+0,5x-y^2-4}{x^2+y}\)
tính giá trị của A biết x= 1/2 , y là số nguyên âm lớn nhất
bài 2: tìm x
\(\dfrac{x-1}{2004}+\dfrac{x-2}{2003}-\dfrac{x-3}{2002}=\dfrac{x-4}{2001}\)
Tính giá trị biểu thức:
\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{2}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)
\(H=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}}\)
\(I=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2012}{2}+\dfrac{2012}{3}+...+\dfrac{2012}{2011}}\)
Help me!