\(\left\{{}\begin{matrix}x_1=1\\x_{n+1}=\sqrt{x_n\left(x_n+1\right)\left(x_n+2\right)\left(x_n+3+1\right)}\end{matrix}\right.\). Đặt \(\dfrac{y_n}{x_n}=\sum\limits^n_{i=1}\dfrac{1}{x_i+2}\). Tìm lim \(y_n\)
1) Tìm các số hạng dương của dãy số \(\left(X_n\right)\) được xác định bởi \(X_n=\frac{5}{4}A^2_{n-2}-C^4_{n-1}+C^3_{n-1},\) \(n\ge5\)
2) Tìm các số hạng âm của dãy số \(\left(Y_n\right)\) được xác định bởi \(Y_n=\frac{A^4_{n+4}}{P_{n+2}}-\frac{143}{4P_n},\) \(n\ge1\)
Khảo sát tính đơn điệu dãy số:
\(x_n=\cos\left(\dfrac{1}{\sqrt{n}}\right)+n\)
Mọi người làm ra lòi giải chi tiết giúp mình.Tks
cho dãy số (un) thỏa mãn lim(un-2)=0 với mọi n thuộc N*. giá trị lim(un2+2un-1) bằng?
help pls
Cho hàm số f: R\(\rightarrow\)R , \(n\ge2\) là số nguyên . CMR: nếu
\(\dfrac{f\left(x\right)+f\left(y\right)}{2}\ge f\left(\dfrac{x+y}{2}\right)\forall x,y\ge0\) (1) thì ta có :
\(\dfrac{f\left(x_1\right)+f\left(x_2\right)+....+f\left(x_n\right)}{n}\ge f\left(\dfrac{x_1+x_2+...+x_n}{n}\right)\) \(\forall x\ge0,i=\overline{l,n}\)
Biết lim(x->1) \(\frac{\sqrt{x^2+x}+2-\sqrt[3]{7x+1}}{\sqrt{2}\left(x-1\right)}=\frac{a\sqrt{2}}{b}+c\left(a,b,c,\in Z\right)Và\frac{a}{b}tốigiảm\)
Biết lim(x—>1)\(\frac{\sqrt{x^2+x+2}-\sqrt[3]{7x+1}}{\sqrt{2}\left(x-1\right)}=\frac{a\sqrt{2}}{b}+c\left(a,b,c\in Zvà\frac{a}{b}tốigiản\right)giátrịcủa.a+b+c=?\)
xét tính bị chặn của dãy số un=\(n^2-\sqrt{n^2+1}\)