\(\lim\limits_{x\rightarrow+\infty}=\left(\sqrt[3]{x^3+3\text{x}^2}-\sqrt{x^2-2\text{x}}\right)\\ =\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{x^3+3\text{x}^2}-x+x-\sqrt{x^2-2x}\right)\\ =\lim\limits_{x\rightarrow+\infty}\left(\dfrac{3\text{x}^2}{\sqrt[3]{\left(x^3+3\text{x}^2\right)^2}+x\sqrt[3]{x^3+3\text{x}^2}+x^2}+\dfrac{2\text{x}}{x+\sqrt{x^2-2x}}\right)\\ =\dfrac{3}{1+1+1}+\dfrac{2}{1+1}=2\)