Cho các số thực dương x,y thuộc (0;1). Tìm giá trị lớn nhất của biểu thức: \(P=\sqrt{x}+\sqrt{y}+\sqrt[4]{12}\sqrt{x.\sqrt{1-y^2}+y\sqrt{1-x^2}}\)
cho 2x - y = 2 tìm giá trị nhỏ nhất của biểu thức:
A =\(\sqrt{x^2+\left(y+1\right)^2}+\sqrt{x^2+\left(y-3\right)^2}\)
cho a,b,c dương và \(a^2+b^2+c^2=3\).Tìm giá trị nhỏ nhất của biểu thức:
\(\frac{a^3}{\sqrt{b^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^3}{\sqrt{a^2+3}}\)
Giải các bất phương trình sau:
1. \(\sqrt{5x+1}-\sqrt{4x-1}< 3\sqrt{x}\)
2. \(\sqrt{x+2}-\sqrt{3-x}< \sqrt{5-2x}\)
3 \(\dfrac{\sqrt{12+x-x^2}}{x-11}\ge\dfrac{\sqrt{12+x-x^2}}{2x-9}\)
4.\(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x+18}\).
1.Cho \(0\le x\le3,0\le y\le4\). Tìm giá trị lớn nhất của biểu thức:
\(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\)
2. Cho \(a\ge3,b\ge4,c\ge2\). Tìm giá trị lớn nhất của biểu thức :
\(A=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
Cho \(a,b,c\ge0\) và \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{a^3}{\sqrt{1+b^2}}+\frac{b^3}{\sqrt{1+c^2}}+\frac{c^3}{\sqrt{1+a^2}}\)
Cho a,b,c là các số thực dương tìm giá trị lớn nhất của biểu thức \(P=\frac{8a+3b+4\left(\sqrt{ab}+\sqrt{bc}+\sqrt[3]{abc}\right)}{1+\left(a+b+c\right)^2}.\)
g
Cho x>0,y>0,z>0 và x+y+z=\(\frac{3}{4}\)
Tìm giá trị lớn nhất của biểu thức \(\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\)
Tìm GTNN của biểu thức \(A=\sqrt{2x+5}+\sqrt{4-3x}\left(x\in\left[\frac{-5}{2};\frac{4}{3}\right]\right)\)