\(P=\left[\left(7+4\sqrt{3}\right)\left(4\sqrt{3}-7\right)\right]^{2016}\cdot\left(7+4\sqrt{3}\right)=\left(-1\right)^{2016}\cdot\left(7+4\sqrt{3}\right)=7+4\sqrt{3}\)
\(P=\left[\left(7+4\sqrt{3}\right)\left(4\sqrt{3}-7\right)\right]^{2016}\cdot\left(7+4\sqrt{3}\right)=\left(-1\right)^{2016}\cdot\left(7+4\sqrt{3}\right)=7+4\sqrt{3}\)
Biết rằng tập hợp các giá trị của m để phương trình \(\left(m-2\right)\sqrt{x+3}+\left(2m-1\right)\sqrt{1-x}+m-1=0\)có nghiệm là đoạn [a;b]. Tính giá trị biểu thức S=2019b-2020a-172
Giải pt
\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)
\(sinx-\sqrt{3}cosx=2sin5x\)
\(\sqrt{3}cos5x-2sin3xcos2x-sinx=0\)
\(sinx+cosxsin2x+\sqrt{3}cos3x=2\left(cos4x-sin^3x\right)\)
\(tanx-3cotx=4\left(sinx+\sqrt{3}cosx\right)\)
Giải các phương trình :
a) \(\cos\left(22^0-t\right)\cos\left(82^0-t\right)+\cos\left(112^0-t\right)\cos\left(172^0-t\right)=\dfrac{1}{2}\left(\sin t+\cos t\right)\)
b) \(\sin^2\left(t+45^0\right)-\sin^2\left(t-30^0\right)-\sin15^0\cos\left(2t+15^0\right)=\dfrac{1}{2}\sin6t\)
c) \(\sin^82x+\cos^82x=\dfrac{41}{128}\)
d) \(\sqrt{4\cos^2+1}+\sqrt{4\sin^2x+3}=4\)
e) \(\tan\left(\pi\cot t\right)=\cot\left(\pi\sin t\right)\)
Tính các giới hạn :
a) \(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x^3}{3x^2-4}-\dfrac{x^2}{3x+2}\right)\)
b) \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{9x^2+1}-3x\right)\)
c) \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{2x^2-3}-5x\right)\)
d) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{2x^2+3}}{4x+2}\)e) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{2x^2+3}}{4x+2}\)
Giải: \(2\sqrt{2}cos^3\left(x-\dfrac{\pi}{4}\right)-3cosx-sinx=0\)
Giải: \(4sin^2\dfrac{x}{2}-\sqrt{3}.cos2x=1+2cos^2\left(x+\dfrac{3\pi}{4}\right)\)
Giải pt \(\dfrac{\left(1-2sinx\right)cosx}{\left(1+2sinx\right)\left(1-sinx\right)}=\sqrt{3}.\)
Tìm nghiệm \(x\in\left(0;10\pi\right)\) của phương trình
\(\dfrac{\sqrt{3}}{cos^2x}-tanx-2\sqrt{3}=sinx\left(1+tanx.tan\dfrac{x}{2}\right).\)
Cho a,b,c là độ dài của 3 cạnh tam giác:
Chứng minh rằng:
\(\frac{\sqrt{2\left(b^2+c^2\right)-a^2}}{a}+\frac{\sqrt{2\left(c^2+a^2\right)-b^2}}{b}+\frac{\sqrt{2\left(a^2+b^2\right)-c^2}}{c}\ge3\sqrt{3}\)