không dùng máy tính , tính giá trị của các biểu thức sau
1)\(\left(1+\sqrt{2}+\sqrt{3}\right)\cdot\left(1+\sqrt{2}+\sqrt{3}\right)\)
2)\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}\)
3)\(\dfrac{2+\sqrt{3}}{\sqrt{7-4\sqrt{3}}}-\dfrac{2-\sqrt{3}}{\sqrt{7+4\sqrt{3}}}\)
4)\(\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
5)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
6)\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
1/Tính
A=\(\dfrac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}}-\sqrt{11+2\sqrt{10}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}}+\sqrt{12+8\sqrt{2}}}\)
B=\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}\)
C=\(\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
D=\(\dfrac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}\)
2/So sánh
\(\sqrt{2017^2-1}-\sqrt{2016^2-1}\) và \(\dfrac{2.1016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)
Cho biểu thức \(A=\left(\dfrac{6x+4}{3\sqrt{3x^3}-8}-\dfrac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\dfrac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a, Rút gọn A
b, Tìm các giá trị ngyên của x để biểu thức A nhận giá trị nguyên
MÌNH CẦN GẤP CÁC BẠN GIÚP MÌNH NHA CẢM ƠN NHIỀU
Tính
a/ \(2\sqrt{\dfrac{9-\sqrt{77}}{2}}-\sqrt{\dfrac{2}{10-3\sqrt{11}}}\)
b/ \(\left(\sqrt{13}-1\right)\sqrt{\dfrac{2}{7-\sqrt{13}}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
M=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
a) Rút gọn
b) Tính giá trị của M khi x= \(3+2\sqrt{2}\)
c) Tìm giá trị của x để M>0
Tính giá trị biểu thức sau:
M = \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{2012}+\sqrt{2013}}\)
rút gọn biểu thức
\(c=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
các bạn giúp mink với mink cần gấp
1)\(\sqrt{12}\)\(-\)\(\sqrt{27}\)\(+\)\(\sqrt{48}\)
2)(\(\sqrt{24}+\sqrt{20}-\sqrt{80}\))\(\div\)5
3)2\(\sqrt{27}-\sqrt{\dfrac{16}{3}}\)\(-\)\(\sqrt{48}-\)\(\sqrt{8\dfrac{1}{3}}\)
4) \(\dfrac{1}{\sqrt{5}-\sqrt{3}}\)\(-\)\(\dfrac{1}{\sqrt{5+\sqrt{3}}}\)
cho a = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}\) +\(\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
tính giá trị của biểu thức:
T = \(\dfrac{a^4-4a^3+a^2+6a+4}{a^2-12a+12}\)