Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Alayna

Tính

a/ \(2\sqrt{\dfrac{9-\sqrt{77}}{2}}-\sqrt{\dfrac{2}{10-3\sqrt{11}}}\)

b/ \(\left(\sqrt{13}-1\right)\sqrt{\dfrac{2}{7-\sqrt{13}}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

Nguyễn Lê Phước Thịnh
6 tháng 12 2022 lúc 20:55

a: \(=2\cdot\sqrt{\dfrac{18-2\sqrt{77}}{4}}-\sqrt{20+6\sqrt{11}}\)

\(=\sqrt{11}-\sqrt{7}-\sqrt{11}-3=-\sqrt{7}-3\)

b: B=\(=\left(\sqrt{13}-1\right)\cdot\sqrt{\dfrac{7+\sqrt{13}}{18}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

Đặt \(C=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow C^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)

\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)

=>\(C=\sqrt{5}+1\)

\(B=\left(\sqrt{13}-1\right)\cdot\sqrt{\dfrac{14+2\sqrt{13}}{36}}+\sqrt{5}+1\)

\(=\dfrac{\left(\sqrt{13}-1\right)\left(\sqrt{13}+1\right)}{6}+\sqrt{5}+1\)

=(13-1)/6+căn5+1

=3+căn5