Làm mất căn mẫu và thu gọn
1) \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
2) \(\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
3) \(\left(\dfrac{3\sqrt{125}}{15}-\dfrac{10-4\sqrt{5}}{\sqrt{5}-2}\right)\dfrac{1}{\sqrt{5}}\)
4) \(\dfrac{1}{1+\sqrt{2}}-\dfrac{1}{1-\sqrt{2}}\)
5) \(\dfrac{1}{3+\sqrt{5}}-\dfrac{1}{\sqrt{5}-3}\)
6) \(\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\)
7) \(\dfrac{4}{1-\sqrt{3}}+\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\)
8) \(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}-\dfrac{3}{\sqrt{2}-1}\)
9) \(\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}-1}-\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}+1}\)
10) \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\dfrac{1}{2-\sqrt{3}}\)
11) \(\dfrac{5}{1+\sqrt{6}}-\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}\)
12) \(\dfrac{5}{3-\sqrt{7}}-\dfrac{3}{\sqrt{2}+\sqrt{3}}+\dfrac{-1}{\sqrt{2}-1}\)
Giúp em giải với ạ! Help me~!
Rút gọn:
1) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
2) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
3) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6}-2\sqrt{10}}\)
Giúp em với ạ. Help mee !!!
tính
1.\(\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}\)
2.\(3\sqrt{2}\left(4-\sqrt{2}\right)+3\left(1-2\sqrt{2}\right)^2\)
3.\(\dfrac{1}{2}\left(\sqrt{6}+\sqrt{5}\right)^2-\dfrac{1}{4}\sqrt{120}-\sqrt{\dfrac{15}{2}}\)
4.\(\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
5.\(\left(\sqrt{\sqrt{14}+\sqrt{5}}+\sqrt{\sqrt{14}-\sqrt{5}}\right)^2\)
6.\(\left(\sqrt{3}+1\right)^3-\left(\sqrt{3}-1\right)^3\)
7.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
8.\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
9.\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
Rút gọn:
1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}\)
2) \(\dfrac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)
3) \(\dfrac{7+4\sqrt{3}}{2+\sqrt{3}}\)
a \(\left(2\sqrt{6-}4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)5\sqrt{6}\)
b \(\left(\dfrac{1}{\sqrt{5-}\sqrt{2}}+\dfrac{1}{\sqrt{5}+\sqrt{2}}+1\right).\dfrac{1}{\sqrt{2}+1^2}\)
c \(\dfrac{3}{\sqrt{2+}\sqrt{7}}\dfrac{1}{\sqrt{2-}\sqrt{7}}-1\)
d \(2x\sqrt{300}-15\sqrt{75}+5\sqrt{75}.15\)
\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right)\):\(\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
Tính :
1) \(\left(\sqrt{10}+7\sqrt{2}\right).\sqrt{27-7\sqrt{5}}\)
2) \(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
tính giá trị biểu thức :
a, \(\left(\sqrt{28}+2\sqrt{14}+\sqrt{7}\right)\sqrt{7}-\left(7+\sqrt{2}\right)^2\)
b, \(\sqrt{\dfrac{5}{2}}+\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{5}}\)
c, \(\dfrac{8+2\sqrt{15}}{\sqrt{5}+\sqrt{3}}+\dfrac{7-2\sqrt{10}}{\sqrt{5}-\sqrt{2}}\)
d,\(\dfrac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
Tính:
\(\dfrac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)