D = (4\(\sqrt{10}\) - 4\(\sqrt{6}\) + 5\(\sqrt{6}\) - 3\(\sqrt{10}\) )\(\sqrt{4-\sqrt{15}}\)
D = (\(\sqrt{10}\) + \(\sqrt{6}\) )\(\sqrt{4-\sqrt{15}}\)
D = \(\sqrt{\left(4-\sqrt{15}\right)10}\) + \(\sqrt{\left(4-\sqrt{15}\right)6}\)
D = \(\sqrt{40-10\sqrt{15}}\) + \(\sqrt{24-6\sqrt{15}}\)
D = \(\sqrt{\left(\sqrt{15}\right)^2-2.5.\sqrt{5}+5^2}\) + \(\sqrt{\left(\sqrt{15}\right)^2-2.3.\sqrt{15}+3^2}\)
D = \(\sqrt{\left(\sqrt{15}-5\right)^2}\) + \(\sqrt{\left(\sqrt{15}-3\right)^2}\)
D = 5 - \(\sqrt{15}\) + \(\sqrt{15}\) - 3 = 2
F=\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
=\(\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
=\(\sqrt{5}-\sqrt{3-2\sqrt{5+3}}\)
=\(\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
=\(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
=\(\sqrt{5}-\sqrt{5}+1\)
=1