Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thị Hảo

Bài 1:

a) \(\sqrt{13-2\sqrt{42}}\)

b) \(\sqrt{46+6\sqrt{5}}\)

c) \(\sqrt{12-3\sqrt{15}}\)

d) \(\sqrt{11+\sqrt{96}}\)

Bài 2:

a) \(A=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

b) \(B=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)

c) \(C=\sqrt{3-\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

d) \(D=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

e) \(E=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)

g) \(G=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

h) \(H=4x-\sqrt{9x^2-12x+4}\)

i) \(\frac{\sqrt{7}-\sqrt{2}}{\sqrt{7}+\sqrt{2}}+\frac{\sqrt{7}+\sqrt{2}}{\sqrt{7}-\sqrt{2}}\)

Akai Haruma
17 tháng 8 2019 lúc 0:06

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)

Akai Haruma
21 tháng 8 2019 lúc 0:16

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)

Akai Haruma
21 tháng 8 2019 lúc 0:23

Bài 2:

a)

\(A=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3+1+2\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{(\sqrt{3}+1)^2}}}=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{(\sqrt{3}-1)^2}}=\sqrt{6+2(\sqrt{3}-1)}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}=\sqrt{(\sqrt{3}+1)^2}=\sqrt{3}+1\)

b)

\(B=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}\)

\(=\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-\sqrt{9})^2}}=\sqrt{5}-\sqrt{3-(\sqrt{20}-\sqrt{9})}\)

\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}=\sqrt{5}-\sqrt{5+1-2\sqrt{5}}=\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}\)

\(=\sqrt{5}-(\sqrt{5}-1)=1\)

Akai Haruma
21 tháng 8 2019 lúc 0:26

Bài 2:

c)

\(C=\sqrt{3-\sqrt{5}}(\sqrt{10}+\sqrt{2})(3+\sqrt{5})=\sqrt{6-2\sqrt{5}}(\sqrt{5}+1)(3+\sqrt{5})\)

\(=\sqrt{5+1-2\sqrt{5}}(\sqrt{5}+1)(3+\sqrt{5})\)

\(=\sqrt{(\sqrt{5}-1)^2}(\sqrt{5}+1)(3+\sqrt{5})\)

\(=(\sqrt{5}-1)(\sqrt{5}+1)(3+\sqrt{5})=4(3+\sqrt{5})\)

d)

\(D=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(D\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}=\sqrt{7+1+2\sqrt{7.1}}-\sqrt{7+1-2\sqrt{7.1}}\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}=\sqrt{7}+1-(\sqrt{7}-1)=2\)

\(\Rightarrow D=\sqrt{2}\)

Akai Haruma
21 tháng 8 2019 lúc 0:31

Bài 2:

e)

\(E^2=16+2\sqrt{(8+2\sqrt{10+2\sqrt{5}})(8-2\sqrt{10+2\sqrt{5}})}\)

\(=16+2\sqrt{8^2-(2\sqrt{10+2\sqrt{5}})^2}\)

\(=16+2\sqrt{64-4(10+2\sqrt{5})}=16+2\sqrt{24-8\sqrt{5}}=16+2\sqrt{20+4-2\sqrt{20.4}}\)

\(=16+2\sqrt{(\sqrt{20}-\sqrt{4})^2}=16+2(\sqrt{20}-\sqrt{4})\)

\(=12+2\sqrt{20}=10+2+2\sqrt{10.2}=(\sqrt{10}+\sqrt{2})^2\)

\(\Rightarrow E=\sqrt{10}+\sqrt{2}\) (do $E$ không âm)

g)

\(G=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)

\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}\)

\(=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)

Akai Haruma
21 tháng 8 2019 lúc 0:35

Bài 2:

h)

\(H=4x-\sqrt{9x^2-12x+4}=4x-\sqrt{(3x)^2-2.3x.2+2^2}\)

\(=4x-\sqrt{(3x-2)^2}=4x-|3x-2|\)

\(=\left\{\begin{matrix} 4x-(3x-2): \text{nếu x}\geq \frac{2}{3}\\ 4x-(2-3x): \text{nếu x}< \frac{2}{3}\end{matrix}\right.\)

\(=\left\{\begin{matrix} x+2:\text{nếu x}\geq \frac{2}{3}\\ 7x-2:\text{nếu x}< \frac{2}{3}\end{matrix}\right.\)

i)

\(\frac{\sqrt{7}-\sqrt{2}}{\sqrt{7}+\sqrt{2}}+\frac{\sqrt{7}+\sqrt{2}}{\sqrt{7}-\sqrt{2}}=\frac{(\sqrt{7}-\sqrt{2})^2+(\sqrt{7}+\sqrt{2})^2}{(\sqrt{7}+\sqrt{2})(\sqrt{7}-\sqrt{2})}\)

\(=\frac{7-2\sqrt{14}+2+7+2\sqrt{14}+2}{7-2}=\frac{18}{5}\)


Các câu hỏi tương tự
Selena Nguyễn
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Mặc tử han
Xem chi tiết
Nguyễn Hoài Phương Như
Xem chi tiết
Ami Yên
Xem chi tiết
Quốc Sơn
Xem chi tiết
Phương Anh
Xem chi tiết
hello sunshine
Xem chi tiết
Felix MC-Gamer
Xem chi tiết