Ta có B= \(\frac{1}{2009.2010}-(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2007.2008}+\frac{1}{2008.2009}) \)
=\(\frac{1}{2009.}-\frac{1}{2010} -(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008} +\frac{1}{2008}-\frac{1}{2009}) \)
=\(\frac{1}{2009}-\frac{1}{2010}-(1-\frac{1}{2009} )\)
=\(\frac{2}{2009}-1 -\frac{1}{2010} \)