Ta có: \(\dfrac{1}{c}=\dfrac{1}{2}\cdot\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Leftrightarrow\dfrac{2}{c}=\dfrac{1}{a}+\dfrac{1}{b}\)
\(\Leftrightarrow\dfrac{2}{c}=\dfrac{a+b}{ab}\)
\(\Leftrightarrow2ab=c\left(a+b\right)\)
\(\Leftrightarrow ab+ab-ca-cb=0\)
\(\Leftrightarrow ab-ca=cb-ab\)
\(\Leftrightarrow a\left(b-c\right)=b\left(c-a\right)\)
hay \(\dfrac{a}{b}=\dfrac{c-a}{b-c}\)
hay \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)(đpcm)