P = \(1+\dfrac{1}{2}\cdot\left(1+2\right)+\dfrac{1}{3}\cdot\left(1+2+3\right)+\dfrac{1}{4}\cdot\left(1+2+3+4\right)+...+\dfrac{1}{16}\cdot\left(1+2+3+...+16\right)\)
Cho a + b + c = 2016 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}.\) Tính S = \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Giải giúp mình nha.
Làm lại cho you đây -_- vừa nãy bấm mt nhầm,đời t nhọ vãi
1)\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+....+16\right)\)
\(P=1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+\dfrac{1+2+3+4}{4}+...+\dfrac{1+2+3+...+16}{16}\)
Xét thừa số tổng quát: \(\dfrac{1+2+3+...+t}{t}=\dfrac{\left[\left(t-1\right):1+1\right]:2.\left(t+1\right)}{t}=\dfrac{\dfrac{t}{2}\left(t+1\right)}{t}=\dfrac{\dfrac{t^2}{2}+\dfrac{t}{2}}{t}=\dfrac{t\left(\dfrac{t}{2}+\dfrac{1}{2}\right)}{t}=\dfrac{t}{2}+\dfrac{1}{2}\)
Như vậy: \(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)
\(P=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+....+\dfrac{17}{2}\)
\(P=\dfrac{2+3+4+5+...+17}{2}\)
\(P=\dfrac{152}{2}=76\)
2) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)
\(\Rightarrow2016\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{2016}{a+b}+\dfrac{2016}{b+c}+\dfrac{2016}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{2016}{3}-1-1-1=\dfrac{2007}{3}\)
\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\)
Xét thừa số tổng quát: \(\dfrac{1+2+3+..+n}{n}=\dfrac{\left[\left(n-1\right):1+1\right]:2.\left(n+1\right)}{n}=\dfrac{\dfrac{n}{2}\left(n+1\right)}{n}=\dfrac{\dfrac{n^2}{2}+\dfrac{n}{2}}{n}=\dfrac{n\left(\dfrac{n}{2}+\dfrac{1}{2}\right)}{n}=\dfrac{n}{2}+\dfrac{1}{2}\)
Như vậy:
\(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)
\(P=1+\dfrac{2}{2}+\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{1}{2}+\dfrac{4}{2}+\dfrac{1}{2}+...+\dfrac{16}{2}+\dfrac{1}{2}\)
\(P=1+\left(\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{16}{2}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+...+\dfrac{1}{2}\right)\)
\(P=1+\dfrac{2+3+4+...+16}{2}+\dfrac{15}{2}\)
\(P=1+\dfrac{\left[\left(16-2\right):1+1\right]:2.\left(16+2\right)}{2}+\dfrac{15}{2}\)
\(P=1+210+\dfrac{15}{2}=218,5\)