Ôn tập chương 1

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hạ Anh Thư

P = \(1+\dfrac{1}{2}\cdot\left(1+2\right)+\dfrac{1}{3}\cdot\left(1+2+3\right)+\dfrac{1}{4}\cdot\left(1+2+3+4\right)+...+\dfrac{1}{16}\cdot\left(1+2+3+...+16\right)\)

Cho a + b + c = 2016 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}.\) Tính S = \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

Giải giúp mình nha.

 Mashiro Shiina
7 tháng 12 2017 lúc 18:30

Làm lại cho you đây -_- vừa nãy bấm mt nhầm,đời t nhọ vãi

1)\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+....+16\right)\)

\(P=1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+\dfrac{1+2+3+4}{4}+...+\dfrac{1+2+3+...+16}{16}\)

Xét thừa số tổng quát: \(\dfrac{1+2+3+...+t}{t}=\dfrac{\left[\left(t-1\right):1+1\right]:2.\left(t+1\right)}{t}=\dfrac{\dfrac{t}{2}\left(t+1\right)}{t}=\dfrac{\dfrac{t^2}{2}+\dfrac{t}{2}}{t}=\dfrac{t\left(\dfrac{t}{2}+\dfrac{1}{2}\right)}{t}=\dfrac{t}{2}+\dfrac{1}{2}\)

Như vậy: \(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)

\(P=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+....+\dfrac{17}{2}\)

\(P=\dfrac{2+3+4+5+...+17}{2}\)

\(P=\dfrac{152}{2}=76\)

2) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)

\(\Rightarrow2016\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{2016}{a+b}+\dfrac{2016}{b+c}+\dfrac{2016}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{2016}{3}-1-1-1=\dfrac{2007}{3}\)

 Mashiro Shiina
7 tháng 12 2017 lúc 18:00

\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\)

Xét thừa số tổng quát: \(\dfrac{1+2+3+..+n}{n}=\dfrac{\left[\left(n-1\right):1+1\right]:2.\left(n+1\right)}{n}=\dfrac{\dfrac{n}{2}\left(n+1\right)}{n}=\dfrac{\dfrac{n^2}{2}+\dfrac{n}{2}}{n}=\dfrac{n\left(\dfrac{n}{2}+\dfrac{1}{2}\right)}{n}=\dfrac{n}{2}+\dfrac{1}{2}\)

Như vậy:

\(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)

\(P=1+\dfrac{2}{2}+\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{1}{2}+\dfrac{4}{2}+\dfrac{1}{2}+...+\dfrac{16}{2}+\dfrac{1}{2}\)

\(P=1+\left(\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{16}{2}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+...+\dfrac{1}{2}\right)\)

\(P=1+\dfrac{2+3+4+...+16}{2}+\dfrac{15}{2}\)

\(P=1+\dfrac{\left[\left(16-2\right):1+1\right]:2.\left(16+2\right)}{2}+\dfrac{15}{2}\)

\(P=1+210+\dfrac{15}{2}=218,5\)


Các câu hỏi tương tự
Nguyên Hưng Trần
Xem chi tiết
Nguyễn Khánh Ly
Xem chi tiết
Adam Tien
Xem chi tiết
Yuuki Asuna
Xem chi tiết
Nguyễn Quý Trung
Xem chi tiết
china rain
Xem chi tiết
Walker Trang
Xem chi tiết
Nhi Sieu Quay
Xem chi tiết
Walker Trang
Xem chi tiết