Bài 1: Tính:
a) \(A=4\cos^2\alpha-6\sin^2\alpha\) biết \(\sin\alpha=\frac{1}{5}\)
b) \(B=\sin\alpha.\cos\alpha\) biết \(\tan\alpha+\cot\alpha=3\)
c) \(C=\cot^2\alpha-\cos^2\alpha.\cot^2\alpha\) biết \(\sin\alpha=\frac{3}{4}\)
Bài 1 : Cho biết sin=0,6. Tính cos, tg và cotg
Bài 2:
1. Chứng minh rằng
a) tg2 a+1=\(\dfrac{1}{cos^2a}\)
b) cotg2 a+1=\(\dfrac{1}{sin^2a}\)
c) cos4 a-sin4 a=2cos2 a-1
2. Áp dụng: tính sin, cos a, cotg a, biết tg a=2
Bài 3: Biết tg=4/3. Tính sin, cos, cotg
a) Biết Sin α.cos α=\(\dfrac{12}{25}\). Tính tỉ số lượng giác của góc α
b) Biết Sin α=\(\dfrac{3}{5}\). Tính A=5.Sin2α + 6cos2α
c) Biết cot α=\(\dfrac{4}{3}\). Tính D=\(\dfrac{Sin\alpha+cos\alpha}{Sin\alpha-cos\alpha}\)
Bài 1: Tính A= Sin mũ 2 10 độ + Cos mũ 2 20 độ + Sin mũ 2 80 độ + Sin mũ 2 70 độ B= Sin mũ 2 15 độ + Sin mũ 2 35 độ + Sin mũ 2 75 độ + Sin mũ 2 55 độ
Bài 1: Tính. A= Sin mũ 2 10 độ + Cos mũ 2 20 độ+ Sin mũ 2 80 độ+ Sin mũ 2 70 độ. B= Sin mũ 2 15 độ + Sin mũ 2 35 độ + Sin mũ 2 75 độ + Sin mũ 2 55 độ
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Tính sin B, sin C trong mỗi trường hợp sau (làm tròn đến chữ số thập phân thứ tư ), biết rằng :
a) AB = 13; BH = 5
b) BH = 3 ; CH = 4
a) Biết sin =9/15 .Tính cos ; tan ; cot?
b) Biết cos =3/5.Tính sin, tan, cot?
c) Biết tan =3/4. Tính cot, sin, cos?
Biết \(sin\alpha=\dfrac{12}{13};sin\beta=\dfrac{\sqrt{3}}{2}\). Tính các tỉ số lượng giác còn lại của các góc \(\alpha;\beta\)
Cho tam giác ABC; AB = c; AC = b; BC = a; đường phân giác AD. Chứng minh:
1) \(\sin\dfrac{A}{2}\le\dfrac{a}{b+c}\)
2) \(\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{S}< 2\)
3) \(\dfrac{1}{\sin\dfrac{A}{2}}+\dfrac{1}{\sin\dfrac{B}{2}}+\dfrac{1}{\sin\dfrac{C}{2}}\ge6\)
4) \(\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{2}\le\dfrac{1}{8}\)
5) \(\dfrac{1}{\sin^2\dfrac{A}{2}}+\dfrac{1}{\sin^2\dfrac{B}{2}}+\dfrac{1}{\sin^2\dfrac{C}{2}}\ge12\)