Cho a,b,c là các số thực dương thỏa mãn:\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\).
1,Tính a+b+c ,biết rằng ab+bc+ca=9
2,CMR nếu c≥a, c≥b thì c≥a+b
1. Biết a, b, c đôi 1 khác nhau . Chứng miinh rằng :
\(\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}+\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}+\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}=\dfrac{2}{a-b}+\dfrac{2}{b-c}+\dfrac{2}{c-a}\).
2. Cho x,y,z đôi một khác nhau thoả mãn \(\dfrac{xy+1}{y}+\dfrac{yz+1}{z}+\dfrac{zx+1}{x}\). Chứng minh rằng : \(\left|xyz\right|=1\)
1. Cho a,b,c,d là các số thực thoả mãn: \(b+d\ne0\) và \(\frac{ac}{b+d}\ge2\).
Chứng minh rằng phương trình \(\left(x^2+ax+\right)\left(x^2+cx+d\right)=0\) (x là ẩn)
luôn có nghiệm.
2.\(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
Phân tích thành nhân tử:
\(a)ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\\ b)a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\\ c)a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b+1\right)\)
\(\dfrac{1}{\left(1+a^2\right)}+\dfrac{1}{\left(1+b^2\right)}\ge\dfrac{2}{\left(1+ab\right)}\)
\(\Leftrightarrow\left(1+a^2\right)\left(1+ab\right)+\left(1+a^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow1+b^2+ab+ab^3+1+a^2+ab+a^3b-2\left(1+a^2+b^2+a^2b^2\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2+2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
Điều này hiển nhiên đúng do ab \(\ge\) 1, (a-b)2 \(\ge\) 0
Dấu "=" xảy ra khi và chỉ khi a = b = 1
cho a,b,c là các số thực dương thỏa ab+bc+ca=1.cmr
\(\left(1-a^2\right)\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+\left(1-b^2\right)\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=2c\left(1+ab\right)\)
Với mọi a,b,c . CMR
\(-\dfrac{1}{2}\le\dfrac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\dfrac{1}{2}\)
Bài 3: Khi chia đa thức \(P\left(x\right)=x^{81}+ã^{57}+bx^{41}+cx^{19}+2x+1\) được số dư là 5 và khi chia đa thức P(x) cho (x-2) được số dư là -4
a) Hãy tìm các số thực A,B biết đa thức \(Q\left(x\right)=x^{81}+ã^{57}+bx^{41}+cx^{19}+Ax+B\) chia hết cho đa thức \(x^2-3x+2\)
b) Với giá trị của A và B vừa tìm được, hãy tính giá trị của đa thức
\(R\left(x\right)=Q\left(x\right)-P\left(x\right)+x^{81}+x^{57}-2x^{41}+2x^{19}+2x+1\)tại x = 1,032016
Cho \(\left|a\right|\ge2,\left|b\right|\ge2\), CMR :
\(\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+b\right)\left(ab+1\right)+5\)