\(\dfrac{1}{\left(1+a^2\right)}+\dfrac{1}{\left(1+b^2\right)}\ge\dfrac{2}{\left(1+ab\right)}\)
\(\Leftrightarrow\left(1+a^2\right)\left(1+ab\right)+\left(1+a^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow1+b^2+ab+ab^3+1+a^2+ab+a^3b-2\left(1+a^2+b^2+a^2b^2\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2+2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
Điều này hiển nhiên đúng do ab \(\ge\) 1, (a-b)2 \(\ge\) 0
Dấu "=" xảy ra khi và chỉ khi a = b = 1
Cho tam giác ABC có AB=c, BC=a, AC=b và \(P=\frac{a+b+c}{2}\)
CMR: a) (P-a)(P-b)(P-c) \(\le\)\(\frac{1}{8}abc\)
b) \(\frac{1}{P-a}+\frac{1}{P-b}+\frac{1}{P-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
c) \(\frac{1}{\left(P-a\right)^2}+\frac{1}{\left(P-b\right)^2}+\frac{1}{\left(P-c\right)^2}\ge\frac{P}{\left(P-a\right)\left(P-b\right)\left(P-c\right)}\)
Cho \(\left(a+b\right)^3+4ab\ge2.\)Tìm min \(A=3\left(a^4+b^4+a^2b^2\right)-2\left(a^2+b^2\right)+1\)
cho a, b, c đôi một khác nhau. CMR:
\(\dfrac{a^2}{\left(b-c\right)^2}+\dfrac{b^2}{\left(c-a\right)^2}+\dfrac{c^2}{\left(a-b\right)^2}\ge2\)
1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)
Cho a, b>0. Chứng minh rằng:
a) \(\dfrac{3a^2+2ab+3b^2}{a+b}\ge2\sqrt{2\left(a^2+b^2\right)}\)
b) \(\dfrac{2ab}{a+b}+\sqrt{\dfrac{a^2+b^2}{2}}\ge\sqrt{ab}+\dfrac{a+b}{2}\)
c) \(\dfrac{1}{\left(1+a\right)^2}+\dfrac{1}{\left(1+b\right)^2}\ge\dfrac{1}{1+ab}\)
Cho a + b + c = 1 và a,b,c là các số thực dương. CMR: \(\left(ab+c^2\right)\left(bc+a^2\right)\left(ca+b^2\right)\ge abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Cho a,b,c>0 và abc=1 CMR \(\frac{a^4\left(b^2+c^2\right)}{b^3+2c^3}+\frac{b^4\left(a^2+c^2\right)}{c^3+2a^3}+\frac{c^4\left(a^2+b^2\right)}{a^3+2b^3}\ge2\)
1. Cho \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) , trong đó: \(x,y,z>0\)
Chm: \(x=y=z\)
2. Cho \(a_1,a_2,...,a_n>0\) và \(a_1a_2...a_n=1\) Chm: \(\left(1+a_1\right)\left(1+a_2\right)...\left(1+a_n\right)\ge2^n\)
3. Chm \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\) \(\left(a,b\ge0\right)\)