lim \(\frac{1}{\sqrt[4]{64n^4+3n^3-2n^2+1}-\sqrt{n^2-3n+5}-3n}\)
1. tính gới hạn \(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+7}-\sqrt{5-x^2}}{x-1}\)
2. tính gới hạn của dãy số \(\lim\limits\frac{1^7+2^7+...+n^7}{n^8}\)
Tính các giới hạn sau (\(n\rightarrow+\infty\) )
a) \(\lim\limits\dfrac{\left(-3\right)^n+2.5^n}{1-5^n}\)
b) \(\lim\limits\dfrac{1+2+3+....+n}{n^2+n+1}\)
c) \(\lim\limits\left(\sqrt{n^2+2n+1}-\sqrt{n^2+n-1}\right)\)
lim \(\frac{\sqrt{4n^2+1}-\sqrt{n+2}}{2n-3}\) bằng
A. \(\frac{3}{2}\)
B. 2
C. 1
D. \(+\infty\)
Câu 1:
Xác đinh k để hàm: f(x)=\(\left\{{}\begin{matrix}\frac{x^{2016}+x-2}{\sqrt{2018x+1}-\sqrt{x+2018}}\\k\end{matrix}\right.\)liên tục tại 1
Câu 2: Cho \(lim\)(x-->1) \(\frac{x^2+ax+b}{x^2-1}=\frac{1}{2}\). Tổng S= \(a^2+b^2\) bằng bao nhiêu
Câu 3: lim(x->1) \(\frac{\sqrt{x^2+x+2}-\sqrt[3]{7x+1}}{\sqrt{2}\left(x-1\right)}=\frac{a\sqrt{2}}{b}+c\) với a/b là phân số tối giản. Tính a+b+c
Trong các giới hạn sau , giới hạn nào không tồn tại ?
A. \(lim\frac{x+1}{\sqrt{x-2}}\left(x\rightarrow1\right)\)
B. \(lim\frac{x+1}{\sqrt{-x+2}}\left(x\rightarrow-1\right)\)
C. \(lim\frac{x+1}{\sqrt{2-x}}\left(x\rightarrow1\right)\)
D. \(lim\frac{x+1}{\sqrt{2+x}}\left(x\rightarrow-1\right)\)
Cho lim \(\left(\frac{\sqrt{x^2+x+2}-\sqrt[3]{2x^3+5x+1}}{x^2-1}\right)=\frac{a}{b}\) \(\left(x\rightarrow\infty\right)\) ( \(\frac{a}{b}\) là phân số tối giản , a , b là số nguyên ) . Tính tổng \(L=a^2+b^2\)
A. 150
B. 143
C. 140
D. 145
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x+1}-\sqrt[3]{2x^3+x-1}\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{4x^2+x+1}-2x\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+x^2+1}+\sqrt{x^2+x+1}\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x+1}-2\sqrt{x^2-x}+x\right)\)
\(\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{x^2+2x}-2\sqrt{x^2+x}+x\right)\)
Mọi người giúp em với.
Tính:
a) \(\lim\limits_{x\rightarrow1}\left(\frac{x^m-1}{x^n-1}\right)\)
b) \(\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)\left(1-\sqrt[3]{x}\right)\left(1-\sqrt[4]{x}\right)\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)^4}\)