0≥x,y ,z,t ≤10
0≥x,y ,z,t ≤10
Biết: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\) . Tính P = \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Tìm x,y,z,t biết
a,x:y:z:t=15:7:3:1 và x-y+z-t=10
b,\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}vàx+y-z=69\)
c,2x=3y,5y=7z và 3x+5z-7y
d,\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}và5z-3x-4y=50\)
Cho x,y,z,t thỏa mãn
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{z+y+z}\)
Tính gt bt:
\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)
Tìm x,y,z biết:
a, x = y/6 = z/3
b, x/2 = y = z/3
c, x/6 = y/3 = z/3
d, x/2 = y/3 = z/4
e, x/2 = y/-2 = z/5
f, x/2 = y/-3 = z/4
jup mk
tìm x,y,z: \(\dfrac{x^2}{6}+\dfrac{y^2}{7}+\dfrac{z^2}{8}=\dfrac{x^2+y^2+z^2}{10}\)
Tìm x, y, z biết rằng \(\frac{x}{5}=\frac{y}{6}\), \(\frac{y}{8}=\frac{z}{7}\)và x+y-z=69.
Bài 1: Tính diện tích hình chữ nhật biết tỷ số 2 cạnh là 5/3 và nửa chu vi là 24m
Bài 2: Tìm x,y,z biết: x/2 = y/3;y/4=z/5 và x+y=10+z
tìm x y z biết x^3 + y^3 + z^3 = x +y + z + 2017
Tìm x,y,z biết
\(\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)