Ta có: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)\(=\frac{5z-25-3x+3-4y-12}{6-16-30}\)\(=\frac{\left(5z-3x-4y\right)-\left(25-3+12\right)}{-40}\)\(=\frac{50-34}{-40}=\frac{16}{-40}=\frac{2}{-5}\)
+) \(\frac{x-1}{2}=\frac{-2}{5}\Rightarrow5\left(x-1\right)=-4\Rightarrow x-1=\frac{-4}{5}\)\(\Rightarrow x=\frac{-4}{5}+1=\frac{1}{5}\)
+)\(\frac{y+3}{4}=\frac{-2}{5}\Rightarrow5\left(y+3\right)=-8\Rightarrow y+3=\frac{-8}{5}\)\(\Rightarrow y=\frac{-8}{5}-3=\frac{-23}{5}\)
+)\(\frac{z-5}{6}=\frac{-2}{5}\Rightarrow5\left(z-5\right)=-12\Rightarrow z-5=\frac{-12}{5}\)\(\Rightarrow z=\frac{-12}{5}+5=\frac{13}{5}\)
Vậy...