Ta có: \(\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\left(1\right)\\y+z=\dfrac{1}{3}\left(2\right)\\z+x=\dfrac{1}{4}\left(3\right)\end{matrix}\right.\)
Cộng (1); (2); (3) vế theo vế ta được:
\(2\left(x+y+z\right)=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)
=> \(2\left(x+y+z\right)=\dfrac{13}{12}\)
=> \(x+y+z=\dfrac{13}{24}\)
+) Mà \(x+y=\dfrac{1}{2}\) => \(z=\dfrac{13}{24}-\dfrac{1}{2}\) = \(\dfrac{1}{24}\)
+) Mà y + z = \(\dfrac{1}{3}\) => \(\left\{{}\begin{matrix}y=\dfrac{1}{3}-\dfrac{1}{24}\\x=\dfrac{13}{24}-\dfrac{1}{3}\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=\dfrac{7}{24}\\x=\dfrac{5}{24}\end{matrix}\right.\) (TM)
Vậy \(x=\dfrac{5}{24};y=\dfrac{7}{24};z=\dfrac{1}{24}\)
P/s: Bài này có nhiều cách giải lắm!
x + y=1/2
y + z=1/3
z + x=1/4
=> x + y + y + z + z + x = 1/2 + 1/3 + 1/4 = 13/12
hay: 2(x + y + z ) = 13/12
x + y + z = 13/12 :2
x + y + z = 13/24
x = 13/24 - 1/3 = 5/24
y = 13/24 - 1/4 = 7/24
z = 13/24 - 1/2 = 1/24
Vậy ...
Ta có: 2.(x+y+z)=\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)
=> 2.(x+y+z)=\(\dfrac{13}{12}\)
=>x+y+z=\(\dfrac{13}{24}\)
=>\(\dfrac{1}{2}+z=\dfrac{13}{24}\)
=>\(z=\dfrac{1}{24}\) (1)
Thay (1) vào z+x=\(\dfrac{1}{4}\)
=>x=\(\dfrac{5}{24}\)
Thay (1) vào y+z=\(\dfrac{1}{3}\)
=>y=\(\dfrac{7}{24}\)
Thôi ! Để khác biệt tui sẽ lm 1 cách nx!
+) \(x+y=\dfrac{1}{2}\) => \(x=\dfrac{1}{2}-y\) (1)
+) \(y+z=\dfrac{1}{3}\) => \(z=\dfrac{1}{3}-y\) (2)
Mà \(x+z=\dfrac{1}{4}\) (3)
Từ (1); (2); (3) => \(\dfrac{1}{2}-y+\dfrac{1}{3}-y=\dfrac{1}{4}\)
=> \(-2y=\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\)
=> \(-2y=\dfrac{-7}{12}\) => \(y=\dfrac{-7}{12}:\left(-2\right)=\dfrac{7}{24}\)
=> \(\left\{{}\begin{matrix}x=\dfrac{1}{2}-\dfrac{7}{24}=\dfrac{5}{24}\\z=\dfrac{1}{3}-\dfrac{7}{24}=\dfrac{1}{24}\end{matrix}\right.\)
Vậy .......................