Giải:
Ta có: \(3\left(x-1\right)=2\left(y-2\right)\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}\)
\(4\left(y-2\right)=3\left(z-3\right)\Rightarrow\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6+z-3}{4+9+4}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{17}\)
\(=\frac{50-11}{17}=\frac{39}{17}\)
+) \(\frac{x-1}{2}=\frac{39}{17}\Rightarrow x-1=\frac{78}{17}\Rightarrow x=\frac{95}{17}\)
+) \(\frac{y-2}{3}=\frac{39}{17}\Rightarrow y-2=\frac{117}{17}\Rightarrow y=\frac{151}{17}\)
+) \(\frac{z-3}{4}=\frac{39}{17}\Rightarrow z-3=\frac{156}{17}\Rightarrow z=\frac{207}{17}\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{95}{17};\frac{151}{17};\frac{207}{17}\right)\)