Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
fghj

Tìm (x,y) nguyên thỏa mãn phương trình \(x^4-y^4=3x^2+1\)

Akai Haruma
31 tháng 8 2019 lúc 17:25

Lời giải:

PT \(\Leftrightarrow y^4=x^4-3x^2-1\)

Ta thấy:

\(x^4-3x^2-1=(x^2-4x^2+4)+x^2-5=(x^2-2)^2+x^2-5\)

Nếu $x^2-5\leq 0\Rightarrow x^2< 9\Rightarrow -3< x< 3$. Vì $x$ nguyên nên $x\in\left\{\pm 2; \pm 1;0\right\}$

Thử các TH trên ta thấy đều không thỏa mãn.

Do đó $x^2-5>0$.

\(\Rightarrow x^4-3x^2-1=(x^2-2)^2+x^2-5> (x^2-2)^2(*)\)

Mặt khác:

\(x^4-3x^2-1=(x^4-2x^2+1)-(x^2+2)=(x^2-1)^2-(x^2+2)< (x^2-1)^2(**)\)

Từ $(*); (**)\Rightarrow (x^2-1)^2> x^4-3x^2-1> (x^2-2)^2$

$\Leftrightarrow (x^2-1)^2> y^4> (x^2-2)^2$

Theo nguyên lý kẹp thì điều này vô lý

Do đó không tồn tại $x,y$ nguyên thỏa mãn đề bài.


Các câu hỏi tương tự
Bi Bi
Xem chi tiết
Phạm Lan Hương
Xem chi tiết
Nguyễn Thị Thanh Trang
Xem chi tiết
Nguyễn Thị Thanh Trang
Xem chi tiết
TRANPHUTHUANTH
Xem chi tiết
Ngọc Linh
Xem chi tiết
Cao Thị Thùy Linh
Xem chi tiết
Trần Đặng Hạ Quỳnh
Xem chi tiết
Mai Thị Loan
Xem chi tiết