a) \(2^{x+1}.3^y=12^x=4^x.3^x=2^{2x}.3^x\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=2x\\y=x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(c,2^x-2^y=2y\left(2^{x-y}-1\right)=256\)(vì x > y)
Ta có; \(256⋮\left(2^{x-y}-1\right)\Rightarrow2^{x-y}-1=1\)
\(\Rightarrow x-y=1\)
\(\Rightarrow2^y=2^8\Rightarrow y=8\)
vậy x = 9; y=8
\(\)