\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{xy}=1\)
\(\Rightarrow\dfrac{x}{xy}+\dfrac{y}{xy}+\dfrac{2}{xy}=1\)
\(\Rightarrow\dfrac{x+y+2}{xy}=1\Leftrightarrow x+y+2=xy\Leftrightarrow x+y+2-xy=0\)
\(\Rightarrow x+y+3-xy-1=0\)
\(\Rightarrow x+y-xy-1=3\)
\(\Rightarrow x\left(1-y\right)-1\left(1-y\right)=3\)
\(\Rightarrow\left(x-1\right)\left(1-y\right)=3\)
Xét ước
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{xy}=1\\ \Leftrightarrow\dfrac{x+y+2}{xy}=1\\ \Leftrightarrow x+y+2=xy\\ \Leftrightarrow xy-x-y+1=3\\ \Leftrightarrow\left(x-1\right)\left(y-1\right)=3\)
vì x,y nguyên nên x-1 và y-1 cũng nguyên
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=3\\y-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=1\\y-1=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-1\\y-1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\y-1=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}x=0\\y=-2\end{matrix}\right.\left(loại\right)\\\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy cặp số x,y cần tìm là: (2;4) và (4;2)