a) Theo đề bài, ta có:
\(\dfrac{x+4}{2007}+\dfrac{x+3}{2008}=\dfrac{x+2}{2009}+\dfrac{x+1}{2010}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2007}+1\right)+\left(\dfrac{x+3}{2008}+1\right)=\left(\dfrac{x+2}{2009}+1\right)+\left(\dfrac{x+1}{2010}+1\right)\)
\(\Leftrightarrow\left(\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}\right)-\left(\dfrac{x+2011}{2009}+\dfrac{x+2011}{2010}\right)=0\)
\(\Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2010}\right)=0\)
\(\Leftrightarrow x+2011=0\)
\(\) Vậy \(x=-2011\)