b) Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}.\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}.\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) và \(x+y+z=92.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2.\)
\(\left\{{}\begin{matrix}\frac{x}{10}=2\Rightarrow x=2.10=20\\\frac{y}{15}=2\Rightarrow y=2.15=30\\\frac{z}{21}=2\Rightarrow z=2.21=42\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(20;30;42\right).\)
c) Ta có: \(2x=3y=5z.\)
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\) và \(x+y-z=95.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{95}{6}.\)
\(\left\{{}\begin{matrix}\frac{x}{3}=\frac{95}{6}\Rightarrow x=\frac{95}{6}.3=\frac{95}{2}\\\frac{y}{5}=\frac{95}{6}\Rightarrow y=\frac{95}{6}.5=\frac{475}{6}\\\frac{z}{2}=\frac{95}{6}\Rightarrow z=\frac{95}{6}.2=\frac{95}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(\frac{95}{2};\frac{475}{6};\frac{95}{3}\right).\)
Chúc bạn học tốt!