a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\) và x - 3y + 4z = 62
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
⇒ \(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
⇒ x = 4.2 = 8
⇒ 3y = 2.9 = 18 ⇒ y = 18 : 3 = 6
⇒ 4z = 2.36 = 72 ⇒ z = 72 : 4 = 18
Vậy ...
b,\(\frac{x}{y}=\frac{9}{7},\frac{y}{z}=\frac{7}{3}\) và x - y + z = -15
Ta có
\(\frac{x}{y}=\frac{9}{7}\) ⇒ \(\frac{x}{9}=\frac{y}{7}\) (1)
\(\frac{y}{z}=\frac{7}{3}\) ⇒ \(\frac{y}{7}=\frac{z}{3}\) (2)
Từ (1) và (2)
⇒ \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
⇒ \(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
Vậy...
c, \(\frac{x}{y}=\frac{7}{20},\frac{y}{z}=\frac{5}{8}\) và 2x + 5y - 2z = 100
Ta có:
\(\frac{x}{y}=\frac{7}{20}\) ⇒ \(\frac{x}{7}=\frac{y}{20}\) (1)
\(\frac{y}{z}=\frac{5}{8}\) ⇒ \(\frac{y}{5}=\frac{z}{8}\) ⇒ \(\frac{y}{20}=\frac{z}{32}\) (2)
Từ (1) và (2) ⇒ \(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\)
⇒ \(\frac{2x}{14}=\frac{5y}{100}=\frac{2z}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{2x}{14}=\frac{5y}{100}=\frac{2z}{64}=\frac{2x+5y-2z}{14+100-64}=\frac{100}{50}=2\)
⇒ 2x = 2.14 = 28 ⇒ x = 28 : 2 = 14
⇒ 5y = 2.100 = 200 ⇒ y = 200 : 5 = 40
⇒ 2z = 2.64 = 128 ⇒ z = 128 : 2 = 64
Vậy ...
Học tốt❤