a) Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k\)
\(\Rightarrow y=5k\)
\(\Rightarrow xy=2k.5k=10k^2\)
\(\Rightarrow10k^2=10\)
\(\Rightarrow k^2=\frac{10}{10}=1\Rightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)
Với \(k=1\)
\(\Rightarrow x=2k=2.1=2\)
\(\Rightarrow y=5k\Rightarrow y=5.1=5\)
Với \(k=-1\)
\(\Rightarrow x=2k=-1.2=-2\)
\(\Rightarrow y=5k=-1.5=-5\)
b) \(7x=3y\Rightarrow\frac{7x}{21}=\frac{3y}{21}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{16}{4}=4\)
\(x=4.7=28\)\(y=4.3=12\)Vậy: \(x=28,y=12\)
c) \(\frac{x+1}{x-1}=\frac{x-2}{x+3}\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=\left(x-1\right)\left(x-2\right)\)
\(\Rightarrow x^2+3x+x+3=x^2-2x-x+2\)
\(\Rightarrow x^2+4x+3=x^2-3x+2\)
\(\Rightarrow x^2-x^2+3=-3x-4x+2\)
\(\Rightarrow7x=-1\)
\(\Rightarrow x=-\frac{1}{7}\)