Ta có \(\left|x+2015\right|+\left|x+2016\right|+\left|x+2017\right|\ge0\Rightarrow6x\ge0\Rightarrow x\ge0\)
=> \(\left|x+2015\right|+\left|x+2016\right|+\left|x+2017\right|=3x+6048=6x\Rightarrow3x=6048\Rightarrow x=2016\)
Vậy x=2016
Ta có:
\(\left|x+2015\right|\ge0\)
\(\left|x+2016\right|\ge0\)
\(\left|x+2017\right|\ge0\)
\(\Rightarrow\left|x+2015\right|+\left|x+2016\right|+\left|x+2017\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x\right|=x\)
\(\Rightarrow\left|x+2015\right|+\left|x+2016\right|+\left|x+2017\right|=\left(x+2015\right)+\left(x+2016\right)+\left(x+2017\right)=6x\)
\(\Rightarrow3x+6048=6x\)
\(\Rightarrow3x=6048\)
\(\Rightarrow x=2016\)
Vậy \(x=2016\)
|x+2015|+|x+2016|+|x+2017| = 6x
<=> \(\left[\begin{array}{nghiempt}x+2015+x+2016+x+2017=6x\\x+2015+x+2016+x+2017=-6x\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}3x+6048=6x\\3x+6048=-6x\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}3x=6048\\-9x=6048\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=2016\\x=-672\end{array}\right.\)