\(A=28x^2-20x+1\)
\(A=\left(\sqrt{28}x-\dfrac{5\sqrt{7}}{7}\right)^2-\dfrac{18}{7}\)
\(A\ge\dfrac{-18}{7}\)(dấu "=" xảy ra\(\Leftrightarrow x=\dfrac{5}{14}\))
Ta có: \(A=3x^2-8x+6x^2-2x+13x^2-8x+6x^2-2x+1\)
\(\Leftrightarrow A=28x^2-20x+1\)
\(\Leftrightarrow A=28x^2-28\cdot2\cdot\dfrac{5}{14}x+28\cdot\left(\dfrac{5}{14}\right)^2-28\cdot\left(\dfrac{5}{14}\right)^2+1\)
\(\Leftrightarrow A=28\left(x^2-2\cdot\dfrac{5}{14}+\dfrac{5}{14}^2\right)-\dfrac{18}{7}\)
\(\Leftrightarrow A=28\left(x-\dfrac{5}{14}\right)^2-\dfrac{18}{7}\ge-\dfrac{18}{7}\)
Vậy GTNN của A là: \(-\dfrac{18}{7}\)
Dấu "=" xảy ra khi: \(28\left(x-\dfrac{5}{14}\right)^2=0\Leftrightarrow x=\dfrac{5}{14}\)