Bài 1: Tìm gtln của các bth
a)A= -x^2 – 4x -2
b)B= -2x^2 – 3x +5
c)C= (2-x)(x + 4)
d)D= -8x^2 + 4xy – y^2 +3
Bài 2:CMR: Giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a)A=25x^2 – 20x + 7
b)B=9x^2 – 6xy + 2y^2 + 1
c)E=x^2 – 2x + y^2 – 4y +6
Cho x+y=2. Tìm giá trị lớn nhất của biểu thức:
A= 1/x+1/y-1/x^2y^2
Tách phần nguyên của biểu thức sau đây và tìm các giá trị nguyên của x để biểu thức cx có giá trị nguyên:
\(\dfrac{4x^3-6x^2+8x}{2x-1}\)
Giá trị của biểu thức 2x - 3/5 không lớn hơn giá trị của biểu thức x + 2/2
P = \(\left(1-\dfrac{x^2+2x+1}{x^3+1}\right)\)\(:\dfrac{x^2+2x+1}{x^3+1}\)
a)Tìm điều kiện của x để biểu thức P xác định
b)Rút gọn biểu thức P
c)Với giá trị nào của x thì P = 2
d)Tìm các giá trị nguyên của x để P nhận giá trị nguyên
P = \(\left(1-\dfrac{x^2}{x^2-x+1}\right):\dfrac{x^2+2x+1}{x^3+1}\)
a)Tìm điều kiện của x để biểu thức P xác định
b)Rút gọn biểu thức P
c)Với giá trị nào của x thì P = 2
d)Tìm các giá trị nguyên của x để P nhận giá trị nguyên
1) Tìm giá trị nhỏ nhất của biểu thức A, B, C, D và giá trị lớn nhất của biểu thức E, F:
A = x2 - 4x + 1 B = 4x2 + 4x + 11 C = (x -1)(x + 3)(x + 2)(x + 6)
D = 2x2 + y2 – 2xy + 2x – 4y + 9 E = 5 - 8x - x2 F = 4x - x2 +1
Bài 1: Tìm các giá trị nhỏ nhất của các biểu thức
a)A=x^2 - 2x + 5
b)B= x^2 - x + 1
c)C=(x-1)(x+2)(x+3)(x+6)
d)D=x^2 + 5y^2 - 2xy + 4y + 3
Rút gọn biểu thức sau, rồi tìm giá trị của x để giá trị của biểu thức rút gọn là 1 số dương:
\(\dfrac{8-2x}{x^2+x-20}\)