a/ \(\left|x-3\right|=x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x+1\\x-3=-x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-x=1+3\\x+x=-1+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=4\left(loại\right)\\2x=2\end{matrix}\right.\) \(\Leftrightarrow x=1\)
Vậy ...
b/ \(\left|x-2\right|=2x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2x+3\\x-2=-2x-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x-x=-2-3\\x+2x=-3+2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy ,..