Lời giải:
$(x-5)^{x+1}-(x-5)^{x+13}=0$
$\Leftrightarrow (x-5)^{x+1}[1-(x-5)^{12}]=0$
\(\Rightarrow \left[\begin{matrix} (x-5)^{x+1}=0\\ 1-(x-5)^{12}=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x-5=0\\ x-5=\pm 1\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=5\\ x=6\\ x=4\end{matrix}\right.\)