Đặt \(A=\dfrac{1}{3}-\dfrac{1}{3^2}+\dfrac{1}{3^3}-\dfrac{1}{3^4}+......+\dfrac{1}{3^{2015}}-\dfrac{1}{3^{2016}}\)
\(3A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+\dfrac{1}{3^4}-......+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}\)
\(3A+A=4A=1-\dfrac{1}{3^{2016}}\)
\(A=\dfrac{1-\dfrac{1}{3^{2016}}}{4}=\dfrac{\dfrac{3^{2016}-1}{3^{2016}}}{4}=\dfrac{3^{2016}-1}{3^{2016}.4}\)
P/s : Chắc là vậy