a) \(\left(5x-1\right)^6=729\)
\(\Rightarrow\left[{}\begin{matrix}\left(5x-1\right)^6=3^6\\\left(5x-1\right)^6=\left(-3\right)^6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=3\\5x-1=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=4\\5x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
b) \(\dfrac{8}{25}=\dfrac{2^x}{5^{x-1}}\)
\(\Rightarrow\left[{}\begin{matrix}2^x=2^3\\5^{x-1}=5^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x-1=2\end{matrix}\right.\)
\(\Rightarrow x=3\)
Vậy x = 3
c) \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{2}\right)^{10}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{3x}=\left(\dfrac{1}{2}\right)^{10}\)
\(\Rightarrow3x=10\)
\(\Rightarrow x=\dfrac{10}{3}\)
d) \(9^x:3^x=3\)
\(\Rightarrow\left(9:3\right)^x=3\)
\(\Rightarrow3^x=3^1\)
\(\Rightarrow x=1\)