a ) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Leftrightarrow-2\left(2x-5\right)=0\)
\(\Leftrightarrow2x-5=0\Leftrightarrow x=\dfrac{5}{2}.\)
Vậy .........
b) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+4x\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-4\end{matrix}\right.\)
Vậy .........
c ) \(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x^2=-1\left(loại\right)\end{matrix}\right.\)
Vậy .........