\(\overrightarrow{BC}=\left(-6;-2\right)=-2\left(3;1\right)\)
Gọi M là trung điểm BC \(\Rightarrow M\left(1;4\right)\)
Phương trình trung trực BC: \(3\left(x-1\right)+1\left(y-4\right)=0\Leftrightarrow3x+y-7=0\)
Tam giác IBC cân tại I nên I nằm trên trung trực BC
\(\Rightarrow\) Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}x+2y-4=0\\3x+y-7=0\end{matrix}\right.\) \(\Rightarrow I\left(2;1\right)\)
I thuộc (d) ⇒ Tham số hóa tọa độ \(I\left(x;\dfrac{4-x}{2}\right)\)
⇒ \(IB^2=\left(x-4\right)^2+\left(\dfrac{4-x}{2}-5\right)^2\)
và \(IC^2=\left(x+2\right)^2+\left(\dfrac{4-x}{2}-3\right)^2\)
Tam giác cân nên là IB2 = IC2, giải ra tìm x