Phương trình hoành độ giao điểm là:
\(x^2-4x+m=0\)
\(\text{Δ}=\left(-4\right)^2-4m=16-4m\)
Để (P) cắt Ox tại hai điểm phân biệt thì Δ>0
=>-4m+16>0
=>-4m>-16
=>m<4
(P) cắt trục Ox tại hai điểm A,B phân biệt nên \(A\left(x_A;0\right);B\left(x_B;0\right)\)
OA=3OB
=>\(OA^2=9OB^2\)
=>\(\left(x_A-0\right)^2+\left(y_A-0\right)^2=9\left[\left(x_B-0\right)^2+\left(y_B-0\right)^2\right]\)
=>\(\left(x_A\right)^2+\left(y_A\right)^2=9x_B^2+9y_B^2\)
=>\(x_A^2-9x_B^2=y_A^2-9y_B^2\)
=>\(x_A^2-9x_B^2=0\)
=>\(\left[{}\begin{matrix}x_A=3x_B\\x_A=-3x_B\end{matrix}\right.\)
Theo Vi-et, ta có:
\(x_A+x_B=4\) và \(x_A\cdot x_B=m\)
TH1: \(x_A=3x_B\)
\(x_A+x_B=4\)
=>\(3x_B+x_B=4\)
=>\(x_B=1\)
=>\(x_A=3\)
\(m=x_A\cdot x_B=1\cdot3=3\)
TH2: \(x_A=-3x_B\)
\(x_A+x_B=4\)
=>\(-3x_B+x_B=4\)
=>\(-2x_B=4\)
=>\(x_B=-2\)
\(x_A=-3\cdot x_B=-3\cdot\left(-2\right)=6\)
\(m=x_A\cdot x_B=6\cdot\left(-2\right)=-12\)