Ta có \(M=n^2+4n-5\)
\(=\left(n+5\right).\left(n-1\right)\)
Để M là số nguyên tố thì n-1=1 <=> n=2
Ta có \(M=n^2+4n-5\)
\(=\left(n+5\right).\left(n-1\right)\)
Để M là số nguyên tố thì n-1=1 <=> n=2
1. Tìm để biểu thức sau là số nguyên tố : A = 3n3 – 5n2 + 3n – 5 .
2. a) Tìm n ∈ N để giá trị của biểu thức A = n3 + 2n2 – 3 là :
1 ) số nguyên tố ; 2) Bằng 2013
b) Tìm n ∈ N để giá trị của biểu thức B = n4 – n3 – 6n2 + 7n – 21 là số nguyên tố
3. Cho A = x4 + 4 và B = x4 + x2 + 1
a) Tìm GTLN của A - B
b) Phân tích A và B thành nhân tử
c) Tìm các số tự nhiên x để A và B cùng là số nguyên tố .
4. Tìm n ∈ N để : a) A = n.2n+1 ⋮ 3
b) B = 12n2-5n – 25 là số ngưên tố.
c) C = 8n2+10 n+ 3 là số nguyên tố
d) D = (n2+3n)/ 4 là số ngyên tố
5. Chứng minh ∀ số tự nhiên n khác không thì :
a) Số (6n + 1) và số (5n + 1) nguyên tố cùng nhau
b) Số (2n - 1) và số (2n + 1) nguyên tố cùng nhau
6. a) Tìm a N để (a + 1) ; (4a2 + 8a + 5) và (6a2 + 12a + 7) đồng thời là các số nguyên tố .
b) Chứng minh : nếu p là số nguyên tố khác 3 thì số A = 3n + 2014 + 2012p2 là hợp số ,với n N
7. Chứng minh rằng với mỗi số nguyên tố p đều tồn tại vô số số tự nhiên n sao cho2n - n ⋮ p
8. Tìm tất cả các số nguyên tố p sao cho p2 + 14 là số nguyên tố.
9. Cho p ≥ 7 là số nguyên tố. CMR: 11...1( p-1 chữ số 1) ⋮ p.
10. Cho 4 số nguyên dương a , b , c , d thỏa mãn : a2 + b2 = c2 + d2
Chứng minh a + b + c + d là hợp số
11. Tìm số tự nhiên n sao cho số p = n3 – n2 – 7n + 10 là số nguyên tố.
1. Phân tích đa thức thành nhân tử:
a. x2 - x - 6
b. x4 + 4x2 - 5
c. x3 - 19x - 30
2. Phân tích thành nhân tử:
a. A = ab(a - b) + b(b - c) + ca(c - a)
b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)
c. C = (a + b + c)3 - a3 - b3 - c3
3. Phân tích thành nhân tử:
a. (1 + x2)2 - 4x (1 - x2)
b. (x2 - 8)2 + 36
c. 81x4 + 4
d. x5 + x + 1
4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.
b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.
5. Phân tích các đa thức sau đây thành nhân tử
1. a3 - 7a - 6
2. a3 + 4a2 - 7a - 10
3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc
4. (a2 + a)2 + 4(a2 + a) - 12
5. (x2 + x + 1) (x2 + x + 2) - 12
6. x8 + x + 1
7. x10 + x5 + 1
6. Chứng minh rằng với mọi số tự nhiên lẻ n:
1. n2 + 4n + 8 chia hết cho 8
2. n3 + 3n2 - n - 3 chia hết cho 48
7. Tìm tất cả các số tự nhiên n để:
1. n4 + 4 là số nguyên tố
2. n1994 + n1993 + 1 là số nguyên tố
8. Tìm nghiệm nguyên của phương trình:
1. x + y = xy
2. p(x + y) = xy với p nguyên tố
3. 5xy - 2y2 - 2x2 + 2 = 0
Với n là số nguyên. CMR: các biểu thức sau đều là số nguyên
A= \(\frac{n^5}{120}+\frac{n^4}{12}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\)
B= \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}\)
C= \(\frac{n^3}{24}+\frac{n^2}{8}+\frac{n}{12}\)(Với n là số chắn)
Tìm số tự nhiên n để giá trị của biểu thức là số nguyên tố:
a) \(12n^2-5n-25\)
b) \(8n^2+10n+3\)
c) \(\dfrac{n^2+3n}{4}\)
Bài 1: a) Tích của 5 số tự nhiên liên tiếp chia hết cho bao nhiêu?
b) tích của 3 số chẵn liên tiếp chia hết cho bao nhiêu?
Bài 2: a) C/m: A=(n-1)(n+1)n2(n2+1)chia hết cho 60
b) Cho A(n)=n(n2+1)(n2+4). Timd điều kiện của n để A(n) chia hết cho 120
Bài 3: C/m với mọi n lẻ
a) n2+4n+3 chia hết cho 8
b)n3+3n2-n-3 chia hết cho 48
Bài 4: C/m: cới mọi n thuộc N
a) 4n+15n-1 chia hết cho 9
b) 10n+18n-28 chia hết cho 27
Bài 5: a) C/m: n4+6n3+11n2+6n chia hết cho 24 với mọi n thuộc N
b) C/m: A= n3(n2-7)2-36n chia hết cho 5040 với mọi n thuộc N
Cần gấp !!!!!!
HELP!!!
THANKS!
CMR: với mọi n thuộc N các số sau là nguyên tố cùng nhau:
a/ 4n+1 và 6n+1 b/5n+4 và 6n+5
Tìm số nguyên dương n để biểu thức sau là số chính phương:
a) \(n^2-n+2\)
b) \(n^4-n+2\)
c) \(n^3-n+2\)
d) \(n^5-n+2\)
cho x+y=6 và y.x=-4 . tính gtri của các bt
C=x^2+y^2 D=x^3+y^3 E=x^3-y^3
b cm A=x(x-6)+10 luôn dương vs mọi x
B=x^2-2x+9y^2-6y+3 luôn dương vs mọi x,y
c. tìm GTLN và GTNN của các bt
A=x^2-4x+1 B=4x^4+4x+11 C=5-8x-x^2 D=5x-x^2
E=(x-1)(x+3)(x+2)(x+6) F=1/x^2+5x+14 G=2x^2+4x+10/x^2+2x+3
d. Tìm cặp số nguyên (x,y)biết x^2-x+8=y^2
e tìm số tự nhiên n^2+4n+97 là số chính phương ,tìm số tự nhiên n để n^2+7n+97 là số chính phương
f. cmr n^3+5n chia hết cho 6
Tìm số tự nhiên n để n-2; n2 - 4n + 8; n2 - 4n + 24 đều là các số nguyên tố.