a) \(\left(n+1\right)\left(n+3\right)=0\)
\(\Rightarrow n+1=0\) hoặc \(n+3=0\)
+) \(n+1=0\Rightarrow n=-1\)
+) \(n+3=0\Rightarrow n=-3\)
Vậy \(n\in\left\{-1;-3\right\}\)
b) \(\left(\left|n\right|+2\right)\left(n^2-1\right)=0\)
\(\Rightarrow\left|n\right|+2=0\) hoặc \(n^2-1=0\)
+) \(\left|n\right|+2=0\Rightarrow\left|n\right|=-2\) ( loại )
+) \(n^2-1=0\Rightarrow n^2=1\Rightarrow n=1\) hoặc \(n=-1\)
Vậy \(n\in\left\{1;-1\right\}\)