n+3 là bội của n+1
➩ (n+3)⋮(n+1)⇔(n+1+2)⋮(n+1)
mà n+1⋮ n+1
➩n+1⋮ 2
➩n+1 ∈ Ư(2)= {±1;±2}
n+1=1⇔n=0
n+1=-1⇔n=-2
n+1=2⇔n=1
n+1=-2⇔n=-3
Ta có: \(n+3⋮n+1\)
\(\Leftrightarrow n+1+2⋮n+1\)
mà \(n+1⋮n+1\)
nên \(2⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(2\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{0;-2;1;-3\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3\right\}\)