a/ \(8^n\)= 4096
\(\Rightarrow\)n=4
b/ 128\(\le\)\(2^n\)<1024
\(2^7\)\(\le\)\(2^n\)<\(2^{10}\)
\(\Rightarrow\)n= \(\left\{{}\begin{matrix}7\\8\\9\end{matrix}\right.\)
a) \(\frac{1}{8}.8^n=2^9\)
⇔ \(\frac{8^n}{8}=2^9\)
⇔ \(\frac{2^{3n}}{2^3}=2^9\)
⇔ \(2^{3n}-2^3=2^9\)
⇔ \(3n-3=9\)
⇔ \(3n=9+3\)
⇔ \(3n=12\)
⇔ \(n=12:3\)
⇒ \(n=4\)
Vậy \(n=4.\)
b) \(4.2^5\le2^n< 4^5\)
⇔ \(2^2.2^5\le2^n< \left(2^2\right)^5\)
⇔ \(2^7\le2^n< 2^{10}\)
⇒ \(\left\{{}\begin{matrix}n=7\\n=8\\n=9\end{matrix}\right.\)
Vậy \(n\in\left\{7;8;9\right\}.\)
Chúc bạn học tốt!