Bài 2. Cấp số cộng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Tìm số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết:

a) \(\left\{ \begin{array}{l}{u_3} - {u_1} = 20\\{u_2} + {u_5} = 54\end{array} \right.\); 

b) \(\left\{ \begin{array}{l}{u_2} + {u_3} = 0\\{u_2} + {u_5} = 80\end{array} \right.\);                   

c) \(\left\{ \begin{array}{l}{u_5} - {u_2} = 3\\{u_8}.{u_3} = 24\end{array} \right.\).

Hà Quang Minh
25 tháng 8 2023 lúc 21:23

\(a,\left\{{}\begin{matrix}u_3-u_1=20\\u_2+u_5=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(u_1+2d\right)-u_1=20\\\left(u_1+d\right)+\left(u_1+4d\right)=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2d=20\\2u_1+5d=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}d=10\\u_1=2\end{matrix}\right.\)

Vậy cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=2\) và công sai \(d=10\)

\(b,\left\{{}\begin{matrix}u_2+u_3=0\\u_2+u_5=80\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+d+u_1+2d=0\\u_1+d+u_1+4d=80\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1=-60\\d=40\end{matrix}\right.\)

Vậy cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=-60\) và công sai \(d=40\)

Hà Quang Minh
25 tháng 8 2023 lúc 21:29

\(c,\left\{{}\begin{matrix}u_5-u_2=3\\u_8\cdot u_3=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+4d-u_1-d=3\\\left(u_1+7d\right)\left(u_1+2d\right)=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}d=1\left(1\right)\\\left(u_1+7d\right)\left(u_1+2d\right)=24\left(2\right)\end{matrix}\right.\)

Thế (1) vào (2), ta được:

\(\left(u_1+7\cdot1\right)\left(u_1+2\cdot1\right)=24\\ \Leftrightarrow u_1^2+9u_1-10=0\\ \Leftrightarrow\left(u_1-1\right)\left(u_1+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}u_1=1\\u_1=-10\end{matrix}\right.\)

Vậy có hai cấp số cộng \(\left(u_n\right)\) thỏa mãn:

- Cấp số cộng có số hạng đầu \(u_1=1\) và công sai \(d=1\)

- Cấp số cộng có số hạng đầu \(u_1=-10\) và công sai \(d=1\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết