Tìm số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_3} - {u_1} = 20\\{u_2} + {u_5} = 54\end{array} \right.\);
b) \(\left\{ \begin{array}{l}{u_2} + {u_3} = 0\\{u_2} + {u_5} = 80\end{array} \right.\);
c) \(\left\{ \begin{array}{l}{u_5} - {u_2} = 3\\{u_8}.{u_3} = 24\end{array} \right.\).
\(a,\left\{{}\begin{matrix}u_3-u_1=20\\u_2+u_5=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(u_1+2d\right)-u_1=20\\\left(u_1+d\right)+\left(u_1+4d\right)=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2d=20\\2u_1+5d=54\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}d=10\\u_1=2\end{matrix}\right.\)
Vậy cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=2\) và công sai \(d=10\)
\(b,\left\{{}\begin{matrix}u_2+u_3=0\\u_2+u_5=80\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+d+u_1+2d=0\\u_1+d+u_1+4d=80\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1=-60\\d=40\end{matrix}\right.\)
Vậy cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=-60\) và công sai \(d=40\)
\(c,\left\{{}\begin{matrix}u_5-u_2=3\\u_8\cdot u_3=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}u_1+4d-u_1-d=3\\\left(u_1+7d\right)\left(u_1+2d\right)=24\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}d=1\left(1\right)\\\left(u_1+7d\right)\left(u_1+2d\right)=24\left(2\right)\end{matrix}\right.\)
Thế (1) vào (2), ta được:
\(\left(u_1+7\cdot1\right)\left(u_1+2\cdot1\right)=24\\ \Leftrightarrow u_1^2+9u_1-10=0\\ \Leftrightarrow\left(u_1-1\right)\left(u_1+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}u_1=1\\u_1=-10\end{matrix}\right.\)
Vậy có hai cấp số cộng \(\left(u_n\right)\) thỏa mãn:
- Cấp số cộng có số hạng đầu \(u_1=1\) và công sai \(d=1\)
- Cấp số cộng có số hạng đầu \(u_1=-10\) và công sai \(d=1\)