1) Có bao nhiêu số hạng trong khai triển \(\left(\sqrt{3}+\sqrt[4]{5}\right)^{124}\) là số nguyên ?
2) Có bao nhiêu số hạng trong khai triển \(\left(\sqrt[4]{3}+\sqrt[3]{4}\right)^{100}\) là số hữu tỉ ?
2) Có bao nhiêu số hạng trong khai triển \(\left(\sqrt[5]{9}+\sqrt[9]{5}\right)^{225}\) là số hữu tỉ ?
Tìm số hạng hữu tỉ trong khai triển: (\(\frac{1}{\sqrt{2}}\)+\(\sqrt[3]{5}\))\(^{3n+1}\).
Biết rằng n là số nguyên dương thỏa mãn điều kiện nCn + 2*(nCn-1) + nC(n-2)= (n+2)C(2n-3)
Trong khai triển \(\left(\sqrt{3}+\sqrt[3]{2}\right)^9\). Tìm các số hạng là số nguyên
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
trong khai triển: \(\left(\sqrt{2}+\sqrt[4]{3}\right)^{200}\) có bn số hạng là số hữu tỉ
làm chi tiết hộ mình nha.
tìm các số hạng trong các khai triển sau:
a, số hạng thứ 13 trong kt \(\left(\frac{1}{\sqrt[3]{x^2}}+\sqrt[4]{x^3}\right)^{17}\), \(x\ne0\)
b, số hạng thứ 3 trong kt: \(\left(2+x^2\right)^n\) biết rằng : \(3^nC^0_n-3^{n-1}C_n+3^{n-2}C_n^2+...+\left(-1\right)C_n^n\)
có bao nhiêu hạng tử là số nguyên trong khai triển
a) (\(\sqrt{3}+\sqrt[3]{7}\) )128
b) \(\left(\sqrt{3}+\sqrt[4]{8}\right)^{124}\)
2. Trong khai triển nhị thức ( a +2)^n +6 ( n€N). Có tất cả 17 số hạng . Vậy n bằng?
6. Trong khai triển (2a -1)^6 tổng 3 số hạng đầu là?
7. Trong khai triển ( x - √y )^16 tổng hai số hạng cuối là
1: hệ số của số hang chứa x8 trong khai triển \(\left(\frac{1}{x^4}+\sqrt[2]{x^5}\right)^{12}\)
2: hệ số của số hang chứa x16 trong khai triển \(\left[1-x^2\left(1-x^2\right)\right]^{16}\)
3: hệ số của số hạng chứa x5 trong khai triển \(x\left(1-2x\right)^5+x^2\left(1+3x\right)^{10}\)