Bài 3: Nhị thức Niu-tơn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lu nguyễn

trong khai triển: \(\left(\sqrt{2}+\sqrt[4]{3}\right)^{200}\) có bn số hạng là số hữu tỉ

làm chi tiết hộ mình nha.

Nguyễn Việt Lâm
12 tháng 11 2019 lúc 23:39

\(\left(2^{\frac{1}{2}}+3^{\frac{1}{4}}\right)^{200}\) có SHTQ: \(C_{200}^k\left(2^{\frac{1}{2}}\right)^k\left(3^{\frac{1}{4}}\right)^{200-k}=C_{200}^k2^{\frac{k}{2}}.3^{50-\frac{k}{4}}\)

Do 2 và 3 nguyên tố cùng nhau nên số hạng là hữu tỉ khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{k}{2}\in N\\\frac{k}{4}\in N\\k\in N\end{matrix}\right.\) \(\Rightarrow k=4n\)

\(\Rightarrow\)\(\frac{200-0}{4}+1=51\) số hạng hữu tỉ

Khách vãng lai đã xóa