Lời giải:
Xét PT \(x^2+2y^2+2xy+3y-4=0\)
\(\Leftrightarrow x^2+(2y).x+(2y^2+3y-4)=0\)
Coi PT trên là phương trình bậc 2 ẩn x, để pt có nghiệm thì:
\(\Delta'=y^2-(2y^2+3y-4)\geq 0\)
\(\Leftrightarrow -y^2-3y+4\geq 0\)
\(\Leftrightarrow (1-y)(4+y)\geq 0\)
\(\Leftrightarrow -4\leq y\leq 1\). Vì \(y\in\mathbb{Z}\Rightarrow y\in\left\{-4; -3;-2;-1;0;1\right\}\)
Thay từng TH vào pt ban đầu ta thu được:
+) \(y=-4\rightarrow x=4\)
+) \(y=-3\rightarrow x=1;x=5\)
+) \(y=-2\rightarrow x\not\in\mathbb{Z}\)(loại)
+) \(y=-1\rightarrow x\not\in\mathbb{Z}\) (loại)
+) \(y=0\rightarrow x=\pm 2\)
+) \(y=1\rightarrow x=-1\)
Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?