Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho
Cho hệ pt: \(\left\{{}\begin{matrix}x+my=3\\mx+4y=6\end{matrix}\right.\)
Gọi nghiệm của hệ phương trình là (x;y). Tìm m để pt có nghiệm x > 1, y > 0
a) Tìm nghiệm nguyên của phương trình: \(2y^2-x+2xy=y+4\)
b) Giải phương trình : ( \(1+x\sqrt{x^2+1}\))(\(\sqrt{x^2+1}-x\)) = 1
Cho phương trình:\(x^{2-}\left(m+5\right).x-m+6=0\)(1),( x là ẩn,m là tham số)
a.Giải phương trình với m=1
b.Với giá trị nào của m thì phương trình (1) có 2 nghiệm x1,x2 thỏa mãn:
\(x_1^2+x_1x_2^2=24\)
Tìm m để phương trình \(x^2+2\left(m-1\right)x+2m-3=0\)
có hai nghiệm phân biệt
x1; x2 thỏa mãn 2x1 + 3x2 > 4.
Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}4x^2-4xy-14x-3y^2+y+10=0\\5\sqrt{xy}+2x+2y=6\sqrt{y}-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^4+3x^2y+4x^2-2y^2+3y+2=0\\\sqrt{x\left(y-1\right)}+2y+2\sqrt{y-1}=3x+2\sqrt{x}+2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^6+3x^2-y^3-6y^2-15y-14=0\\\sqrt{xy+2x-y-2}+6x-2y=10\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
Giair các phương trình và hệ phương trình sau:
a) \(\left\{{}\begin{matrix}\dfrac{3x-1}{x+2}+\dfrac{2y+3}{y-2}=6\\\dfrac{2x+5}{x+2}-\dfrac{3y-1}{y-2}=2\end{matrix}\right.\)
b) \(3\left(\sqrt{x+3}+\sqrt{6-5x}\right)=2x^2+7\)
x2-(m+2)x+2m=0
Tìm m để phương trình có 2 nghiệm x1,x2 phân biệt thỏa mãn\(\left(x_1+x_2\right)^2-x_1x_2\le3\)
Giải phương trịnh, hệ phương trình sau:
a) \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2-x=y^2-y\end{matrix}\right.\)
b) \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)