Cho đa thức \(f\left(x\right)=x^5-3x^4+ax^3+bx^2+cx-15\)
a ) Xác định a,b,c để đa thức f(x) chia hết cho đa thức \(g\left(x\right)=x^3-x^2-4x+4\)
b ) Tìm giá trị nhỏ nhất của thương trong phép chia f(x) cho g(x)
Biết rằng đa thức P(x) chia hết cho x-a khi và chỉ khi P(a) =0
Hãy tìm các giá trị m;n sao cho đa thức:
\(P\left(x\right)=mx^2+\left(m+1\right)x^2-\left(4n+3\right)x+5n\) đồng thời chia hết cho x-1 và x+2
cho đa thức f(x)= \(2x^3-ax^2+2bx+2a-1.\)Biết f(x) chia hết cho đa thức g(x)= \(x^2-x-2\). Xác định a,b
Cho đa thức f(x) = \(x^4+x^3+x^2+x+1\)tìm số dư khi chia f(x^5) cho f(x)
Đa thức f(x) khi chia cho x+1 dư 4 , khi chia cho \(x^2+1\) dư 2x+3. Tìm đa thức dư khi chia f(x) cho \(\left(x+1\right)\left(x^2+1\right)\)
Cho đa thức \(Q\left(x\right)=2x^3-\left(2m+3n\right)x^2+nx+3\) (biến số là x). Tìm m và n sao cho Q(x) chia hết cho (1+2x) và biết \(x=\sqrt{3}\) là một nghiệm của Q(x)
Cho hai đa thức P(x)=\(x^4-2x^3+7x^{2^{ }}+ax+b-2\) và Q(x)=\(x^2+2\) (a, bϵR). Tìm a, b để đa thức P(x) chia hết cho đa thức Q(x).
tìm các số thực a,b sao cho đa thức x4+x2+1 chia hết cho đa thức x2 +ax+b với mọi x
cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)