ĐK: y\(\ge0\)
\(y=\dfrac{x}{x^2+2}\)
\(\Rightarrow yx^2-x+2y=0\)
Để pt có nghiệm thì \(\Delta\ge0\)
\(\Rightarrow\left(-1\right)^2-4y.2y\ge0\)
\(\Leftrightarrow1-8y^2\ge0\)
\(\Leftrightarrow y^2\le\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{-\sqrt{2}}{4}\le y\le\dfrac{\sqrt{2}}{4}\)
Vậy ymax=\(\dfrac{\sqrt{2}}{4}\Leftrightarrow\dfrac{x}{x^2+2}=\dfrac{\sqrt{2}}{4}\)
\(\Leftrightarrow\sqrt{2}x^2+2\sqrt{2}-4x=0\)
\(\Leftrightarrow x=\sqrt{2}\left(TM\right)\)